Journal of Organometallic Chemistry, 210 (1981) 403–409 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTIONS OF ALKYNES WITH BIS(TRIPHENYLPHOSPHINE)PLATINUM-ETHYLENE: A ³¹P-{¹H} NMR STUDY *

GREGORY BUTLER, COLIN EABORN * and ALAN PIDCOCK *

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received November 27th, 1980)

Summary

Internally consistent assignments of the ³¹P-{¹H} NMR parameters of the complexes [Pt(RC=CR')(PPh₃)₂] are proposed, based on the premise that the magnitude of ¹J(PtP) depends mainly on the nature of the moiety =CR *trans* to P. For a given R, ²J(PP) correlates with ¹J(PtP) for the bond *trans* to =CR. The alkynes PhC=CSnEt₃, PhC=CSnPh₃, Me₃SiC=CCl, Me₃SiC=CBr, Et₃SiC=CI and MeC=CI undergo oxidative addition reactions with [Pt(C₂H₄)(PPh₃)₂]; the intermediate alkyne complex was detected for PhC=CSnEt₃, Me₃SiC=CCl and Me₃C=CBr. The triyne Me(C=C)₃Me forms platinum(0) complexes by coordination with the central or terminal C=C bond and appears also to give a platinum(II) complex by oxidative addition.

Introduction

The complexes $[Pt(RC=CR')(PPh_3)_2]$ have an approximately square planar arrangement of 2C and 2P donor atoms with a small dihedral angle between the PtCC and PtPP planes [1]. The ³¹P-{¹H} NMR spectra of several complexes with $R \neq R'$ are known to show the presence of non-equivalent PPh₃ ligands, but the chemical shifts δ and coupling constants ¹J(PtP) have not been assigned to particular PPh₃ ligands [2,3]. We have now recorded the ³¹P-{¹H} NMR spectra of a large number of these complexes and we propose assignments of the spectra based on the premise that the coupling constants ¹J(PtP) show a strong dependence on the nature of the \equiv CR group in the *trans* relationship to the PPh₃ ligand. The coupling constants ¹J(PtP) are known to depend strongly on the *trans* ligand for platinum(II) and platinum(IV) complexes [4], and although the complexes [Pt(RC=CR')(PPh_3)_2] are formally complexes of platinum(0), their electronic structures are regarded as being intermediate between representations A and B, where B is a platinum(II) complex of the dianion

^{*} No reprints available for distribution.

 $[RC=CR]^{2^{-}}$. It is, however, possible that the couplings ${}^{1}J(PtP)$ in these complexes depend mainly on the nature of the =CR group in the *cis* relationship to the PPh₃ ligand, since a group R could have a smaller effect on the relevant electron density at the carbon to which it is attached than on that at the other carbon atom of the multiple bond; in that case our assignments would be reversed.

Results and discussion

The complexes $[Pt(RC \equiv CR')(PPh_3)_2]$ were prepared by treatment of $[Pt(C_2H_4)(PPh_3)_2]$ in dichloromethane with an excess of alkyne, and the ³¹P-{¹H} NMR spectra were recorded in situ. Our results together those available from the literature [2,3,5,6] are given in Table 1. The assignments in Table 1, which are discussed in detail in sections (a)—(d) below, are internally consistent, but reliability is not claimed for a number of assignments (indicated by Footnote *f* of Table 1) in cases in which the values of the coupling constants for the two PPh₃ ligands of a complex differ by only small amount. In Table 1, the complexes have been arranged in groups of complexes with substituents R in common, and within each group in order of decreasing ²J(PP). Where complexes have identical values of ²J(PP) or R = R' (when ²J(PP) cannot be determined from the spectrum), the complexes are ordered with respect to the magnitude of ¹J(PtP) trans to the common $\equiv CR$ moiety.

Assignment of the ${}^{31}P-{}^{1}H$ NMR parameters

(a) Coupling constants ${}^{1}J(PtP)$ trans to $\equiv CPh$ (3454 Hz), $\equiv CSiMe_{3}$ (3731 Hz); \equiv CMe (3420 Hz) and \equiv CC(OH)Me₂ (3406 Hz) are taken from the results for the symmetrical complexes (R = R') VIII, XIV, XXV and XXXI. The coupling constants for II (R = Ph, $R' = SiMe_3$) differ substantially, and from the results for the symmetrical complexes and the assumed dependence of ${}^{1}J(PtP)$ on the nature of the trans moiety, ¹J(PtP) 3528 Hz is assigned to the P trans to \equiv CPh and ${}^{1}J(PtP)$ 3791 Hz is assigned to the P trans to =CSiMe₁. The parameters for complexes I, III, and IV (R = Ph, $R' = SiX_3$, GeX₃) are close to those of II and are similarly assigned. For each of the complexes V and VI one coupling constant ${}^{1}J(PtP)$ has a value which is very close to that in VIII and is, therefore, assigned to P trans to \equiv CPh. Also, for VII the coupling ¹J(PtP) for the PtP bond trans to \equiv CMe is smaller than that trans to \equiv CPh, which is the order expected from the relative magnitudes of the coupling constants for VIII and XXV. The assignment for IX $[R = Ph, R' = C(OH)Me_2]$ is based on the relative magnitudes of the coupling constants for VIII (R = R' = Ph) and XXXI [R = R' =C(OH)Me₂].

Complex	R	—δ(ppm) (PPh3 tra) ^{b 1} J(PtP)(Hz) ans to CR)	R'	—δ(ppm (PPh ₃ tra) ^{b 1} J(PtP)(Hz) ans to CR')	² J(PP) (Hz)
		1127	3579	GeFta	111 1	3716	44
1	Ph	113.0	3528	SiMe ³	111.4	3791	44
11	Ph	112.3	3560	SiPha	1125	3774	42
IV	Ph	112.0	3538	GePha	112.5	3645	42
vc	Ph	113.9	3469	н	109.9	3555	34
VId	Ph	113.3	3457	SnEta	109.0	3506	32
VIIE	Ph	112.8	3456	Me	111.7	3376	32
VIIIe	Ph	112.9	3454	Ph			
IXe	Ph	113.7	3482	C(OH)Me2	116.7	3431	27
x	SiMen	110.9	3826	prn	112.5	3472	49
xı	SiMea	112.1	3772	C ₆ H ₄ C≡CSiMe ₃ -3	112.7	3550	42
XII	SiMe ₁	112.2	3767	C ₆ H ₄ Br-3	112.8	3569	42
хш	SiMea	113,5	3758	$(\eta - Ph)Cr(CO)_3$	113.1	3584	39
XIV	SiMea	106.3	3731	SiMea			
XV f	SiMea	114.2	3701	C≡CSiMe₃	113.0	3687	37
XVI	SiMea	114.0	3623	Cl	115.2	3359	20
XVII g	SiMe ₃	113.5	3633	Br	115.7	3384	17
XVIII f	н	109.1	3706	SiEtz	112.6	3774	46
XIX C	н	109.9	3563	C ₆ H ₄ Me-4	113.8	3451	35
xx	н	109.8	3552	C6H4F-4	113.8	3447	34
XXI f	н	110.9	3528	C ₆ H ₄ Br-4	113.9	3499	32
XXII ^e	н	112.2	3561	C(OH)HMe	113.6	3478	32
XXIII ^e	н	113.5	3547	C(OH)HPh	114.9	3479	27
XXIV f	н	114.2	3501	C(OH)Ph(C≡CH)	115.8	3533	23
XXV	Ме	111.0	3420	Me			
XXVI ^g	Ме	111.7	3357	(C≡C) ₂ Me	113.2	3708	32
XXVII	GeEt ₃	110.8	3764	C ₆ H ₄ Me-2	112.9	3599	44
XXVIII	GeEta	110.9	3716	C ₆ H ₄ Me-3	112.6	3579	44
XXIX	C(OH)Ph2	115.2	3394	C≡CC(OH)Ph ₂	116.6	3657	22
XXX	C(OH)Me ₂	114.2	3374	C≡CC(OH)Me ₂	116.3	3633	22
XXXI ^e	C(OH)Me2	116.5	3406	C(OH)Me ₂			
XXXII	C(OH)H2	113.9	3501	C(OH)H ₂			
XXXIII c	Et	110.5	3430	Et			
XXXIV ^c	C_6H_4Me-4	112.8	3449	C ₆ H ₄ Me-4			
XXXV ^g	C≡CMe	113.7	3569	C≡CMe			
XXXVI ^h	(CH ₂)5	111.1	3420				
XXXVII ⁱ	(CH ₂)4	110.1	3409				
XXXVIII ^j	CF3	120.6	3590	CF ₃			

TABLE 1			
31P-{1H}NMR PA	RAMETERS FOR CO	OMPLEXES [Pt(R-C	≡C-R')(PPh3)2] ª

^a Solutions in dichloromethane at 30°C unless stated otherwise. ^b Positive shifts are to high frequency of the external reference (MeO)₃P in C₆D₆. ^c Result from ref. 3. ^d At -30° C. ^e Result from ref. 2. ^f Tentative assignment, see text. ^g In a mixture, see text. ^h Cycloheptyne, result from ref. 5. ⁱ Cyclohexyne, result from ref. 5. ^j Result from ref. 6.

(b) The results for complex XIV ($R = R' = SiMe_3$) and complexes I–IV imply that ¹J(PtP) trans to $\equiv CMX_3$ (M = Si, Ge) is relatively large and this feature has been used to assign the parameters of complexes X–XIII, XVI, XVII, XXVII and XXVIII. For complex X ($R' = Pr^n$) the coupling trans to $\equiv CPr^n$ agrees satisfactorily with the results for XXV and XXXIII (R = R' = Me or Et), and for complexes XI–XIII, XXVII and XXVIII the couplings trans to $\equiv CAr$ (Ar = aryl) are consistent with the results for P trans to $\equiv CPh$ from complexes I–IX and for P trans to $\equiv CC_6H_4Me-4$ from complex XXXIV. The coupling constants ¹J(PtP) for the complex XV differ by only 14 Hz, so it is not possible to make a reliable assignment for this complex.

(c) Results for the unsubstituted acetylene complex (R = R' = H) are not available, so the assignments for complexes XVIII—XXIV (R = H) must be based mainly on the magnitudes ¹*J*(PtP) trans to the moieties $\equiv CR'$. For each of the complexes XIX and XX (R' = Ar) one coupling constant ¹*J*(PtP) is very similar to those in VIII and XXXIV (R = R' = Ar); the other coupling constants are larger by ca. 100 Hz and are assigned to P trans to $\equiv CH$. For complexes XXII and XXIII one coupling constant is similar to those assigned to the P trans to $\equiv CH$ in complexes XIX and XX, and the other coupling constant is close to the mean of the coupling constants for XXXI [$R = C(OH)Me_2$] and XXXII [$R = C(OH)H_2$] (3454 Hz), which is presumed to provide an estimate for ¹*J*(PtP) trans to $\equiv C(OH)HR$. From the results for complexes X—XVII (R =SiMe_3) it appears probable that the larger coupling constant ¹*J*(PtP) for complex XVIII ($R' = SiEt_3$) should be assigned to the P trans to $\equiv CSiEt_3$, but the relatively small difference between the coupling constants for complex XVIII and for the complexes XXI and XXIV precludes definite assignments.

(d) One coupling constant ¹J(PtP) for complex XXVI ($R = Me, R' = (C \equiv C)_2 Me$) has a similar magnitude to those for P *trans* to $\equiv CMe$ for complexes VII and XXV, and the smaller coupling constants for complexes XXIX [$R = C(OH)Ph_2$] are assigned to P *trans* to $\equiv CC(OH)X_2$ by comparison with ¹J(PtP) for XXXI [$R = R' = C(OH)Me_2$]. The couplings assigned to P *trans* to $\equiv CC \equiv CR$ for complexes XV, XXIX, XXX and XXXV agree satisfactorily with each other.

With the assignments given in Table 1 we have found an approximate linear correlation between ${}^{2}J(PP)$ and ${}^{1}J(PtP)$ for P trans to \equiv CR for each of the groups of complexes with R = Ph (complexes I–VII, IX), with R = SiMe₃ (complexes II, X–XIII, XV–XVII) and with R = H (complexes XVIII–XIV). The

Fig. 1. Graph of ${}^{2}J(PP)$ against ${}^{1}J(PtP)$ irans to $\equiv CSiMe_{3}$ for the complexes [Pt(Me_{3}SiC \equiv CR)(PPh_{3})_{2}].

correlation for $R = SiMe_3$ (correlation coefficient 0.990) is typical and is shown in Fig. 1; for all three correlations larger values of ${}^{2}J(PP)$ are associated with large coupling constants ${}^{1}J(PtP)$ trans to the common =CR moiety. The correlations may reflect a dependence of the relative contributions of structures A and B on the nature of R' within the groups of complexes. Structure B resembles that for a *cis*-bis(triphenylphosphine)platinum(II) complex with σ -carbyl ligands for which both ${}^{1}J(PtP)$ (ca. 1800 Hz) and ${}^{2}J(PP)$ (<20 Hz) are relatively small [4]. For (triphenylphosphine)platinum(0) complexes, which are normally represented by structures analogous to A, the coupling constants ${}^{1}J(PtP)$ and $^{2}J(PP)$ are generally larger [4], so these parameters should increase as the substituent R' favours a larger contribution from structure A. Since the alkyne ligand is formally anionic in structure B, structure A should be favoured by electron-releasing substituents R'. Thus, in contrast to platinum(II) complexes, where electron-releasing substituents increase the trans influence of ligands [4], electron-releasing substituents R' for the alkyne complexes favour structure A and tend to increase ${}^{1}J(PtP)$ for the trans related PPh₃ ligand. Whilst the order of electron release by substituents R' derived on this basis is reasonable (SiR₃, $GeR_3 > H$, $aryl > C(OH)R_2$) for R = Ph or H, the order is somewhat different for $R = SiMe_3$, so other factors, possibly steric, may also be involved.

It is noteworthy that the diynes $R(C=C)_2 R$ [$R = SiMe_3$, $C(OH)Ph_2$, $C(OH)Me_2$] each gave only a single platinum(0) product with non-equivalent PPh₃ ligands, indicating that the diynes are monodentate (complexes XV, XXIV, XXX) under our conditions. For the triyne $Me(C=C)_3Me$ the ³¹P-{¹H} NMR spectrum showed the presence of two complexes with coupling constants ¹J(PtP) of the magnitude expected for alkyne complexes. In one complex (XXVI) the PPh₃ ligands are nonequivalent, as expected for coordination by a terminal C=C group, and the other complex (XXXV) has equivalent phosphines, indicating coordination of the central C=C group. Also present was a minor component with non-equivalent PPh₃ ligands, the ³¹P-{¹H} parameters of which (δ -123.5 ppm, ¹J(PtP) 2378 Hz; δ -124.7 ppm, ¹J(PtP) 2290, ²J(PP) 19 Hz), and in particular the small values of ¹J(PtP), indicate the formation of a platinum(II) complex with both PPh₃ ligands *trans* to ligands of high *trans* influence. This complex is tentatively formulated as *cis*-[Pt(C=CMe)-(C=CC=CMe)(PPh₃)₂], a product of oxidative addition of the alkyne.

Oxidative addition reactions

At room temperature alkynyl-tin compounds PhC=CSnR₃ (R = Me, Et) and alkynyl iodides RC=CI (R = Ph, I) add oxidatively to (phosphine)platinum(0) complexes. With polyhalogeno-alkenes the oxidative addition reaction is known to be preceded by coordination of the olefin [4], so we examined the products of reactions between [Pt(C₂H₄)(PPh₃)₂] and PhC=CSnEt₃, PhC=CSnPh₃, R₃Si-C=CX (X = Cl, Br, I) or MeC=CI. A solution of [Pt(C₂H₄)(PPh₃)₂] in dichloromethane was treated with PhC=CSnEt₃ at ca. -30° C and examined at the same temperature by ³¹P-{¹H} NMR spectroscopy. The spectrum showed the presence of the alkyne complex VI and a second complex with non-equivalent PPh₃ ligands. The latter complex was the only product at room temperature. The ³¹P-{¹H} NMR spectrum establishes the formula *cis*-[Pt(C=CPh)(SnEt₃)(PPh₃)₂]: the parameters (δ --116.2 ppm, ¹J(PtP) 1780, ²J(¹¹⁹SnP) 1426, ²J(¹¹⁷SnP) 1352

Hz; δ -114.3 ppm, ¹J(PtP) 2996, ²J(SnP) 103, ²J(PP) 17 Hz) are similar to those of the complex cis-[PtPh(SnMe_)(PPh_)_] (δ -114.3 ppm, ¹J(PtP) 2060. ²J(¹¹⁹SnP) 1718, ²J(¹¹⁷SnP) 1640 Hz; δ –115.2 ppm, ¹J(PtP) 2129, ²J(SnP) 145, ${}^{2}J(PP)$ 13 Hz [10]), but the value of ${}^{1}J(PtP)$ trans to C=CPh (2996 Hz) is larger than that trans to Ph (2129 Hz), as is expected from the greater trans influence of the Ph ligand [4]. The configuration of the complex [Pt(C=CPh)]- $(SnMe_3)(PPh_3)_2$, obtained from the reaction at room temperature between $[Pt(PPh_3)_{4}]$ and PhC=CSnMe_3 has been assigned *trans* from the observation of a weak single resonance in a relatively low-resolution 31 P NMR spectrum [7]. Since our results for PhC=CSnEt, PhC=CSnPh, (see below) and a variety of tetraorganotin compounds show that *cis*-complexes are invariably obtained from reactions with platinum(0) complexes, it is probable that the complex obtained previously was *cis*, perhaps with only a small chemical shift (which was not resolved) between the non-equivalent nuclei. The reaction at room temperature between $[Pt(C_2H_4)(PPh_3)_2]$ and PhC=CSnPh₃ gave *cis*- $[Pt(C=CPh)(SnPh_3)_2]$ $(PPh_3)_2$ ($\delta -115.9 \text{ ppm}, {}^1J(PtP) 2058, {}^2J({}^{119}\text{SnP}) 1841, {}^2J({}^{117}\text{SnP}) 1760 \text{ Hz};$ δ -118.4 ppm, ¹J(PtP) 2856, ²J(SnP) 114, ²J(PP) 18 Hz).

The ${}^{31}P-{}^{1}H$ NMR spectrum of the mixture obtained after 30 min at room temperature from $[Pt(C_2H_4)(PPh_3)_2]$ and Me₃SiC=CBr showed the presence of the alkyne complex XVII, the parameters of which are similar to those of complex XVI which was obtained as the only product from Me₃SiC=CCl when the same procedure was used. Also present in the reaction mixture from $Me_3SiC \equiv$ CBr were *cis*-[PtBr(C=CSiMe₃)(PPh₃)₂] [δ -121.3 ppm, ¹J(PtP) 2295 Hz, δ -129.4 ppm, ¹J(PtP) 3740, ²J(PP) 18 Hz] and a *trans* complex [δ -119.6 ppm, ${}^{1}J(PtP)$ 2656 Hz] which is probably trans-[PtBr(C=CSiMe_3)(PPh_3)_2]. The reaction at room temperature or at -45° C between Et₃SiC=CI or MeC=CI and $[Pt(C_2H_4)(PPh_3)_2]$ gave mixtures of cis- and trans- $[PtI(C=CR)(PPh_3)_2]$ [R = SiEt₃, cis complex: δ -124.5 ppm, ¹J(PtP) 2334 Hz; δ -131.5 ppm, ¹J(PtP) 3594, ²J(PP) 17 Hz; trans complex: δ -121.1 ppm, ¹J(PtP) 2617 Hz, R = Me, cis complex: δ -125.7 ppm, ¹J(PtP) 2341 Hz; δ -130.5 ppm, ¹J(PtP) 3591, $^{2}J(PP)$ 15 Hz; trans complex: δ --122.0 ppm, $^{1}J(PtP)$ 2617 Hz]. Since the reaction mixture from $[Pt(C_2H_4)(PPh_3)_2]$ and an excess of Me₃SiC=CCl appeared to contain trans-[PtCl(C=CSiMe₃)(PPh₃)₂] [δ --117.8 ppm, ¹J(PtP) 2688 Hz] after 5 days at room temperature, it is evident that the rate of oxidative addition increases in the expected order $\equiv C - Cl \leq \equiv C - Br \leq \equiv C - I$. The rate for $\equiv C - Sn$ most closely resembles that for \equiv C-Br. For PhC=CSnR₃ and R₃SiC=CX (X = Cl, Br) the rates of displacement of ethylene from $[Pt(C_2H_4)(PPh_3)_2]$ exceed that for oxidative addition; kinetic studies have shown that the rate of displacement of ethylene by PhC=CH $(k^{25^{\circ}C} = 2.8 \times 10^2 M^{-1} \text{ sec}^{-1})$ exceeds the rate of oxidative addition of MeI $(k^{25^{\circ}C} = 1.3 \times 10^{-2} M^{-1} \text{ sec}^{-1})$ or PhCH₂Br $(k^{25^{\circ}C} = 1.3 \times 10^{-2} M^{-1} \text{ sec}^{-1})$ $1.4 \times 10^{-1} M^{-1} \text{ sec}^{-1}$ [11].

Experimental

Reactions were carried out under dry, oxygen-free nitrogen. Solvents were dried and distilled before use. The ³¹P-{¹H} NMR spectra were recorded on a JEOL PFT-100 Fourier Transform spectrometer at 40.48 Hz. An external reference of $(MeO)_3P$ in C_6D_6 or of $(MeO)_3PO$ in CD_2Cl_3 (for samples at low temper-

ature) also provided the ²H lock signal. Complexes examined in situ were prepared by addition of an excess of the alkyne to $[Pt(C_2H_4)(PPh_3)_2]$ (0.05 g) in CH_2Cl_2 (1 cm³) in an 8 mm NMR tube. The mixture was shaken for about 5 min, during which period evolution of ethylene occurred, and then set aside for about 30 min before being placed in the spectrometer.

The complex cis-[Pt(C=CPh)(SnPh₃)(PPh₃)₂] was obtained after treatment of [Pt(C₂H₄)(PPh₃)₂] (0.37 g) in toluene (10 cm³) with a slight excess of PhC=C-SnPh₃ (0.23 g). The solution was stirred for 2 h at room temperature. Hexane (20 cm³) was added to give the product as yellow crystals (63%), m.p. 208°C, ν (C=C) 2100 cm⁻¹ (Analysis found: C, 62.5; H, 4.9. C₆₀H_{s0}P₂PtSn calcd.: C, 63.6; H, 4.3%).

References

- 1 S.D. Ittel and J.A. Ibers, Adv. Organometal. Chem., 14 (1976) 33.
- 2 H.D. Empsall, B.L. Shaw and A.J. Stringer, J. Chem. Soc. Dalton, (1976) 185.
- 3 B.E. Mann, B.L. Shaw and N.I. Tucker, J. Chem. Soc. (A), (1971) 2667.
- 4 J.F. Nixon and A. Pidcock, Ann. Rev. NMR Spectroscopy, 2 (1969) 346; T.G. Appleton, H.C. Clark and L.E. Manzer, Coord. Chem. Rev., 10 (1973) 335; P.S. Pregosin and R.W. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, Springer-Verlag, Berlin, 1979.
- 5 T.G. Appleton, M.A. Bennett, A. Singh and T. Yoshida, J. Organometal. Chem., 154 (1978) 369.
- 6 J.D. Kennedy, W. McFarlane, R.J. Puddephatt and P.J. Thompson, J. Chem. Soc. Dalton, (1976), 874.
- 7 B. Cetinkaya, M.F. Lappert, J. McMeeking and D.E. Palmer, J. Chem. Soc. Dalton, (1973) 1202.
- 8 C.D. Cook and G.S. Jauhal, Can. J. Chem., 45 (1967) 801.
- 9 J.W. Bland and R.D.W. Kemmitt, J. Chem. Soc. (A), (1968), 1278; A.J. Mukhedkar, M. Green and F.G.A. Stone, J. Chem. Soc. (A), (1970) 947.
- 10 C. Eaborn, K. Kundu and A. Pidcock, J. Chem. Soc. Dalton, in press.
- 11 J.P. Birk, J. Halpern and A.L. Richard, J. Amer. Chem. Soc., 90 (1968) 4491.